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Abstract: Due to the tremendous interests of several large corporations, making stock mar-
ket predictions has always been one of the most activated research fields. However, fore-
casting stock prices has been restricted by huge factors regarding its characteristics of vol-
atility, seasonality and unpredictability. In 1991, Grant Mcqueen and Steven Thorley, who 
are Professors of Finance at BYU Marriott School of Management, conduct examination of 
predicting stock prices by using Markov Chains. In 2005, Hassan and Nath used only one 
HMM that is trained on the past dataset of the chosen airlines to forecast the stock prices of 
these companies. After reading two journals regarding different approaches, it was not hard 
to notice that these methods actually were conducted based on contradicted assumptions. It 
appears that the transition of methods used in order to predict stock prices has been well 
developed, and this recent study in 2005 has overturned the past premise on random walks 
theory, which suggested stock prices can also be predicted by using existing patterns. Fi-
nally, people can improve the prediction accuracy by combining AI technology and HMM 
according to Hassan and Nath, which is the future researches in this field. After reading 
these all five journals, this paper focus on the trading history on the stock market of Alibaba 
Group. Then researcher sees the history data during the last five years as training data, so it 
is possible to make reasonable predictions for the following days based on the transition 
matrix, which is founded from the training data.  

1. Introduction  

Due to the tremendous interests of several large corporations, making stock market predictions has 
always been one of the most activated research fields. There are several kinds of machine learning 
algorithms that have been applied to this area in the past, which achieved different levels of success. 
However, forecasting stock prices has been restricted by huge factors regarding its characteristics of 
volatility, seasonality and unpredictability [1]. Predicting stock prices will be a more challenging task 
if people are trying to analysis the stock market merely relied on old market data. 

Hidden Markov Model (HMM) is a Markov model that can observe data in order and construct 
modelling concerning concealed state transition [2]. Stock market prediction can be seen as a problem 
that follows that same pattern. Stock prices depend on multiple elements, which have potential effects 
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on investors. Transitions among hidden observations appear to be influenced by company policies, 
financial conditions and administrative decisions [3]. As a result, the stock market may show a tur-
bulent situation, and people believe that HMM is one of the natural predictors of forecasting stock 
prices. My research question is how to predict stock prices by using Markov Chain models. This 
paper will provide technical information with the first four journals and explains several case studies 
with the last journals.  

Eugene F. Fama, who is the 2013 Nobel Laureate in economics sciences, asserts it is not enough 
to predict the stock price with past behaviours of security [4]. Most data analysts share a common 
assumption that previous actions of securities are loaded with information regarding its future behav-
iours since past price behaviours is more likely to repeat itself as future behaviours. However, Fama 
argues this premise is contradicted by the theory of random walks, which states successive price 
modifications are self-dependent, and the price difference series has no memory. In other words, the 
past cannot forecast the future path in any eloquent way. Fama also tests the empirical validity of the 
random walk model.  

Fama also examines the hypothesis of the random walk model, which are (1) successive price 
changes are self-reliant, and (2) the price differences correspond to certain probability distributions 
[5]. In addition to hypothesis examination, Fama introduces the “efficient” market, a market where 
numerous intelligent profit-maximizers are competing assiduously and where significant data is ac-
cessible to all sharers [6]. More importantly, he poses challenges to both data analysts and advocates 
of random walk theory. For data analysts, they need to show they can continually use their patterns 
to make meaningful stock price predictions, while stock advisors must demonstrate they can make a 
better selection based on additional fundamental analysis on new information, which has not been 
entirely considered in the current market [7]. For both journals, Fama discussed both the benefits and 
drawbacks of the theory. There are also some tests conducted on the theory which provide an objec-
tive view to the audiences. The author not only makes recommendations in terms of technical assis-
tance but also gives criticism from all aspects.  

Grant Mcqueen and Steven Thorley, who are Professors of Finance at BYU Marriott School of 
Management, conduct examination of predicting stock prices by using Markov Chains, which is 
based on Fama's journal on 1970. The random walk theory infers that there is no structure in the 
Markov Chain representations, and the transition probabilities are equal, which means the current 
returns are unrelated of the primary returns. Mcqueen and Thorley profess that this new approach 
solves the problem of nonlinearity by enabling the transition probabilities changes over different ob-
servations in a given set of sequences [8]. This journal also presents an investigation of the random 
walk hypothesis based on the statistical theory of finite-state Markov processes [9]. In particular, the 
authors conclude that there is a more progressive weekly serial correlation in small stocks rather than 
large stocks, while the large stocks appear to follow a random walk model from 1978 to 1988 [10]. 
This journal firstly describes the statistical issues with specific data and yields recommendations for 
solutions towards these issues by using asymptotic tests or Fisher's Exact Test, which provides the 
readers with objective opinions on this topic.  

Md. Rafiul Hassan and Baikunth Nath, who are Professors of Computer Science and Software 
Engineering at the University of Melbourne, maintain human traders cannot always win in a stock 
market by its intricate and capricious nature. Hassan and Nath used only one HMM that is trained on 
the past dataset of the chosen airlines to forecast the stock prices of  these companies, which is to 
detect patterns from the previous market behaviours that compete with today’s market and intersperse 
these data with suitable connecting price component of the variable of interest [11]. The authors also 
point out their further research direction in developing a hybrid system using AI paradigms with 
HMM in terms of better accuracy [12]. 
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Jerold B. Warner and Stephen J. Brown, who are Professors of Finance at the University of Roch-
ester Simon School and Professor of Finance at New York University Stern School of Business, study 
the characteristics of the daily stock returns and show how these specific data properties influence 
case study methodologies for evaluating the share price influence concerning company events. This 
journal also reviews the fact that as the sample size of individual security grows, the statistical distri-
bution tend to be normal [13]. This finding has led researchers to conclude that most observations 
cluster around the central peak and the probabilities for values further away from mean taper off 
equally in both directions. Specific methodological issues tend to appear when using daily data, and 
the authors examine an experimental design in order to analyze these issues. Warner and Brown also 
claim that the Raw Return methodology was misspecified, and Mean Adjusted Returns have lower 
power in situations with event-date clustering [14]. Moreover, the fact that samples of NYSE (New 
York Stock Exchange) securities demonstrating remarkably higher power than AMEX (American 
Stock Exchange) securities suggests that exchange-listing is an essential correlate of the power of the 
different tests [15].   

Fama provides fundamental knowledge regarding the behaviours in the stock market and discusses 
the hypothesis of the random walk theory. The framework Mcqueen and Thorley have develop based 
on Fama’s statement and test the data set using Markov Chains. They conclude that there is more 
positive weekly serial correlation in small stocks rather than in large stocks. Hassan and Nath exam-
ined a dataset using HMM, to predict whether the stock price is reasonable and has a sound statistical 
foundation. They show there is a considerable potential to use HMM in the stock market. If they can 
combine HMM with AI paradigms, the accuracy and efficiency of their predication can be improved 
dramatically. Warner and Brown examine the characteristics of daily stock returns and establish the 
relationship between these returns with event study methodologies. In their journal, they use data 
from AMEX securities and NYSE securities to show the sample formation by different trading fre-
quency. More importantly, it appears that the explicit recognition of the properties of daily data can 
be advantageous in some instances.   

In terms of chronology, Fama first discussed the existing patterns in the stock market in his journal 
article, The Behaviour of the Stock Market Prices, at the beginning of 1965. He emphasized that the 
conventional assumption, which is the past patterns that always repeat itself in the future, cannot be 
applied in the stock market. Later in the same year, Fama wrote another journal that further explained 
the concepts of random walk theory, which suggests that each change in the market is independent 
of previous changes. During the year of 1985, Warner and Brown then examined properties of the 
daily stock returns and interpret how these particular characteristics of these data affect event study 
methodologies [16].Six Years later, Mcqueen and Thorley conducted a test on stock returns using 
Markov Chains, which is based on the two journals Fama wrote in 1965. With the help of random 
walks theory, the calculation difficulties have been reduced with the help of simplified equations. 
Recently, Hassan and Nath used the past dataset for some chosen airline companies in order to train 
a Hidden Markov Model (HMM), which is helpful for researchers forecasted the stock prices in 2005. 
They also claim that people can combine AI technology with HMM for better accuracy in prediction. 
In conclusion, it appears that the transition of methods used in order to predict stock prices has been 
well developed, and this recent study in 2005 has overturned the past premise on random walks the-
ory, which suggested stock prices can also be predicted by using existing patterns.  

With technical development and further research in the stock market, the framework has led re-
searchers to consider HMM in the market. As in the stock market, people can only get information 
about the daily stock prices and trading volume, instead of the current status of the market. Under 
this circumstance, the current status of the market is considered as a hidden observation of HMM. As 
a result, it is not hard to find out that people can construct a model base on the given information and 
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hidden information by using HMM. By definition, HMM is a statistical model, which is used to 
describe a Markov Process with unobserved states [17].  

Furthermore, it appears that HMM offers better results than simple Markov Chains, which allows 
more sequences to be found. Unlike the traditional Markov Chains, HMM assumes that the data ob-
served is not the actual status of the case, but instead, they are generated by the underlying hidden 
observations. This finding has led researchers to conclude that it is complicated to understand the 
data from hidden information, yet the Markov property of HMM makes inferences more efficient. In 
addition, HMM has a stronger statistical foundation than a simple Markov Chain, and an efficient 
learning algorithm can take place directly from raw data. 

Figure 1: Timeline of published journals. From The Journal of Business, by E. F. Fama, (1965). 
From Financial Analysts Journal, by E. F. Fama, (1965). From Journal of Financial Economics, by 
B. J. Warner & J. S. Brown, (1985). From 5th International Conference on Intelligent Systems De-

sign and Applications (ISDA05), by M. R. Hassan & B. Nath, (2005). 
 
In addition to the advantages of HMM, there are three significant problems in HMM modelling. 

First, it has been shown that classification and recognition problems are primary problems in HMM 
[18]. For example, how to find the probability that the observations are generated by HMM with a 
sequence of observations. Another one is called the learning problem [19], which means how re-
searchers can modify the parameters in HMM to maximize the probability of producing the observed 
sequences. Last but not least, the difficulties concerning state sequence in HMM and produced the 
observations have been found given an HMM model and a sequence of observations.  
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Nevertheless, hidden Markov models have found full dedication in many distinct fields in terms 
of computational efficiency and flexibility. They are known for their use in temporal pattern recog-
nition and generation, which is useful for researchers to identify the patterns and then use these pat-
terns to predict stock prices for chosen airlines [20]. 

According to Hassen and Nath, people can improve the prediction accuracy by combining AI 
technology and HMM, which is the future researches in this field [21]. Other than the AI algorithm, 
machine learning techniques can be another tool to unearth patterns and insights people did not see 
before and be used to make unerringly accurate predictions.  

2. Methods 

2.1. Visual Description of Markov Chains  

A Markov chain is a stochastic process, but it differs from a general stochastic process in that a 
Markov chain must be “memory-less.” That is, the probability of future actions are not dependent 
upon the steps that led up to the present state, which is called the Markov property. In other words, 
the known present and future are independent of the past [22].  

The Markov Chains prediction model is a random process, which study the states of events and 
transitions patterns among these states, with unique Markov memoryless property.  

2.2. Markov Chain and Their Transition Probability  

2.2.1 Definition 1 

A (discrete-time) Markov chain with (finite or countable) state space 𝜒 is a sequence 𝑥0, 𝑥1, …of 𝜒-
valued random variables such that for all states 𝑖, 𝑗, 𝑘#, 𝑘$, …and all times 𝑛 = 0,1,2, …, 

𝑃(𝑋!"# = 𝑗||𝑋! = 𝑖, 𝑋!$# = 𝑘!$#, … ) = 𝑝(𝑖, 𝑗)             (1) 

where 𝑝(𝑖, 𝑗)  depends only on the states 𝑖, 𝑗 , and not on the time n or the previous states 
𝑘𝑛−1, 𝑘𝑛−2, …. The numbers 𝑝(𝑖, 𝑗) are called the transition probabilities of the chain. 

2.2.2. Proposition 1 

If 𝑋𝑛  is a Markov chain with transition probabilities 𝑝(𝑥, 𝑦), then for every sequence fo states 
𝑥0, 𝑥1, … , 𝑥𝑛+𝑚, 

𝑃(𝑋*+, = 𝑥*+,∀0 < 𝑖 ≤ 𝑛||𝑋, = 𝑥,∀0 ≤ 𝑖 ≤ 𝑚) = ∏
,-$

.
𝑝(𝑥*+,/$,1!"#)            (2) 

Consequently, the n-step transition probabilities  
 

𝑝𝑛(𝑥, 𝑦):= 𝑃(𝑋𝑛+𝑚 = 𝑦||𝑋𝑚 = 𝑥)            (3) 
 

depend only on the time lag n and the initial and terminal states x, y, but not on m.  

2.3. Chapman-Kolmogorov Equations and the Transition Probability Matrix 
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Assume henceforth that {𝑋.}.2# is a discrete-time Markov chain on a state space 𝜒 with transition 
probabilities 𝑝(𝑖, 𝑗). Define the transition probability matrix P of the chain to be the 𝜒 × 𝜒 matrix 
with entries 𝑝(𝑖, 𝑗), that is, the matrix whose ith row consists of the transition probabilities 𝑝(𝑖, 𝑗) for 
𝑗 ∈ 𝜒:  
 

 𝑃 = (𝑝(𝑖, 𝑗)),,3∈5             (4) 
 

If 𝜒 has N elements, then P is an 𝑁 ×𝑁matrix, and if 𝜒 is infinite, then P is an infinite by infinite 
matrix. Also, the row sums of P must all be 1, by the law of total probabilities. A matrix with this 
property is called stochastic. 

2.3.1. Definition 2  

A nonnegative matrix is a matrix with nonnegative entries. A stochastic matrix is a square nonnega-
tive matrix all of whose row sums are 1. A sub-stochastic matrix is a square nonnegative matrix all 
of whose row sums are 1. A doubly stochastic matrix is a stochastic matrix all of whose column sums 
are 1. 

2.3.2. Proposition 2 

The n-step transition probabilities 𝑝𝑛(𝑖, 𝑗) are the entries of the nth power 𝑃𝑛 of the matrix P. Con-
sequently, the n-step transition probabilities 𝑝𝑛(𝑖, 𝑗) satisfy the Chapman-Kolmogorov equations 
 

    𝑝𝑛+𝑚(𝑖, 𝑗) = ∑
𝑘∈𝜒
𝑝𝑛(𝑖, 𝑘)𝑃𝑚(𝑘, 𝑗)           (5) 

 
 

2.3.3. Definition 3 

A probability distribution on X is stationary if 
 

 𝜋𝑇 = 𝜋𝑇												(6) 

2.4. Accessibility and Communicating Classes  

2.4.1. Definition 4 

A state 𝑗 is said to be accessible from state 𝑖 if there is a positive-probability path from 𝑖 to 𝑗, that is, 
if there is a finite sequence of states 𝑘0, 𝑘1, 𝑘2, … , 𝑘( such that 𝑘0 = 𝑖, 𝑘( = 𝑗,and 𝑝(𝑘), 𝑘)"1) > 0 
for each 𝑡 = 0,1,… ,𝑚 − 1. States 𝑖 and 𝑗 are said to communicate if each is accessible from the 
other. This relation is denoted by 𝑖 → 𝑗. 

2.5. Irreducible Markov chains  

If the state space is finite and all states communicate (that is, the Markov chain is irreducible) then in 
the long run, regardless of the initial condition, the Markov chain must settle into a steady state. 

2.5.1. Theorem 1 
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An irreducible Markov chain 𝜒! on a finite state space 𝜒 has a unique stationary distribution 𝜋. Fur-
thermore, if the Markov chain is not only irreducible but also aperiodic, then for any initial distribu-
tion v, 
 

 𝑙𝑖𝑚
!→∞

𝑝,{𝑋! = 𝑗} = 𝜋(𝑗)∀𝑗 ∈ 𝜒         (7) 

2.6. The Krylov-Bogoliubov Argument 

The argument turns on the fact that the probability simplex ℜ is compact. This implies that it has the 
Bolzano-Weierstrass property: Any sequence of vectors in ℜ has a convergent subsequence. Fix a 
probability vector 𝑣 ∈ ℜ, and consider the so-called Cesaro averages 
 

𝑣!-: = 𝑛$1𝑣-𝑃.         (8) 
 

Observe that each average 𝑣𝑛𝑇 is a probability vector (because an average of probability vectors is 
always a probability vector), and so each 𝑣𝑛𝑇 is an element of ℜ. Consequently, the sequence 𝑣𝑛𝑇 has 
a convergent subsequence: 

𝑙𝑖𝑚
.→∞

𝑣!.- = 𝜋-         (9) 

Claim: The limit of any subsequence of 𝑣𝑛𝑇 is a stationary distribution for P. 

2.6.1. Proof  

Denote the limit by 𝜋, as in (9). Since the mapping 𝜇𝑇 → 𝜇𝑇𝑃 is continuous,  
 

	 																				𝜋9𝑃	 = 𝑙𝑖𝑚
:→∞

𝑣.:9 𝑃

	 																																															= 𝑙𝑖𝑚
:→∞

𝑛:
/1 ∑
3-1

.$
𝑣9𝑃3𝑃

	 																																																= 𝑙𝑖𝑚
:→∞

𝑛:
/1 ∑

3-2

.$+1
𝑣9𝑃3

	 														= 𝑙𝑖𝑚
:→∞

𝑛:
/1{ ∑

3-1

.$
𝑣9𝑃3 + 𝑣9𝑃.$+1 − 𝑣9𝑃}

	 																																																			= 𝑙𝑖𝑚
:→∞

𝑛:
/1 ∑
3-1

.$
𝑣9𝑃3

	 																											= 𝜋9

        (10) 

2.7. Strong Markov Property  

2.7.1. Proposition 10. [Strong Markov Property]27 

Let T be a stopping time for the Markov chain {𝑋.}.20. Then the Markov chain “regenerates” at time 
T, that is, the future 𝑋𝑇+1, 𝑋𝑇+2,…is conditionally independent of the past 𝑋0, 𝑋1,… ,𝑋𝑇−1given the 
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value of T and the state 𝑋𝑇 = 𝑥  at time T. More precisely, for any 𝑚 < ∞  and all states 
𝑥0, 𝑥1, … , 𝑥𝑛+𝑚 ∈ 𝜒 such that 𝑇 = 𝑚 is possible, 
 

𝑃(𝑋-"3 = 𝑥("3∀1 ≤ 𝑖 ≤ 𝑛||𝑇 = 𝑚and𝑋3 = 𝑥3∀0 ≤ 𝑖 ≤ 𝑚) = ∏
341

!
𝑝(𝑥("3$1, 𝑥("3)        (11) 

2.8. Recurrence and Transience  

2.8.1. Definition 

Let {𝑋.}.20 be a Markov chain on a finite or countable state space 𝜒, and for any state x let 𝑇𝑥 = 𝑇𝑥1 
be the first passage time to x. A state x is 
(a) recurrent if 𝑃𝑥{𝑇𝑥 < ∞} = 1; 
(b) transient if 𝑃𝑥{𝑇𝑥 < ∞} < 1; 
(c) positive recurrent if 𝐸𝑥𝑇𝑥 < ∞; and 
(d) null recurrent if it is recurrent but 𝐸𝑥𝑇𝑥 = ∞. 

3. Results 

This paper has collected daily stock market data from Alibaba Group from 2014-09-19 to 2019-11-
18. Since Alibaba has made a name for itself in the last 5 years as the “Amazon of China”. The 
company has become a true force in the commerce space, not just as an online platform but as a 
partner and facilitator in every step of the way. The company has been growing at tremendous rates 
and its core business is incredibly profitable. It should be noticed that there are open prices, close 
prices, high and low prices, and, more importantly, the daily trading volume, which indicates the 
tendency of the stock market. Then the growth rate can be found by using the formula below,   
 

[?%&''()*/?+'#,']
?+'#,'

       (12) 

where p stands for price.  
With the help of excel functions, it is not hard to get the growth rate for these five years.  
Similarly, the average and standard derivation can be calculated by using the functions, which 

are -0.000044953700549 and 0.0202264285924483, respectively. Since the lowest growth rate is -
0.087760276925148 and the highest growth rate is 0.0886845473589185, it is reasonable to split the 
data into six different groups with the same range of 0.02, that matches the value of standard deviation 
and the average number. 

Then, the data can be split into six ranges as shown below.   

Table 1: Range States of Alibaba Group Stock Growth Rates From 2014/09/19 to 2019/11/18. 

Growth rate  
States 

1 2 3 4 5 6 

range  (−∞,−0.04] (−0.04, −0.02] (−0.02,0] (0,0.02] (0.02,0.04] (0.04,∞) 

frequency  15 135 478 457 179 31 
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Next, seeing the frequencies as denominator and number of transitioning states as the numerator, 
which gives the transition matrix below.  

Table 2: Transition Matrix of Alibaba Group Stock From 2014/09/19 to 2019/11/1. 

Transition Matrix  1 2 3 4 5 6 

1 1/30 4/30 5/30 8/30 10/30 2/30 

2 5/135 25/135 37/135 46/135 20/135 2/135 

3 17/478 48/478 183/478 177/478 46/478 7/478 

4 3/457 37/457 183/457 155/457 70/457 9/457 

5 2/179 17/179 62/179 62/179 29/179 7/179 

6 1/31 3/31 8/31 13/31 4/31 2/31 

Then since this paper is desired to predict the stock prices in n days, then it is required to multiply 
this matrix to its nth power, which will give the following the matrixes from the first to seventh 
power.  

Table 3: Predicted Transition Matrix in one day. 

Transition 
Matrix 

1 2 3 4 5 6 

1 0.03333333 0.13333333 0.16666667 0.26666667 0.33333333 0.06666667 

2 0.03703704 0.18518519 0.27407407 0.34074074 0.14814815 0.01481481 

3 0.03556485 0.10041841 0.38284519 0.37029289 0.09623431 0.01464435 

4 0.00656455 0.08096280 0.40043764 0.33916849 0.15317287 0.01969365 

5 0.01117318 0.09497207 0.34636872 0.34636872 0.16201117 0.03910615 

6 0.03225806 0.09677419 0.25806452 0.41935484 0.12903226 0.06451613 

Table 4: Predicted Transition Matrix in two days. 

Transition 
Matrix  

1 2 3 4 5 6 

1 0.01960234  0.10557125  0.34535021  0.34989463  0.15035522  0.02922635  

2 0.02221068  0.10984486  0.35343772  0.34755943  0.14426133  0.02268598  

3 0.02249898  0.10231940  0.36541095  0.35053087  0.13777405  0.02146576  

4 0.02203214  0.09999271  0.37054187  0.35396526  0.13202675  0.02144126  

5 0.02155390  0.10107296  0.36540375  0.35359055  0.13547475  0.02290409  

6 0.02011327  0.10058675  0.35996592  0.35111635  0.14338738  0.02483033  
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Table 5: Predicted Transition Matrix in three days. 

 

Table 6: Predicted Transition Matrix in four day. 

 

Table 7: Predicted Transition Matrix in five days. 

 
 

 

Transition 
Matrix 

1 2 3 4 5 6 

1 0.02176542  0.10227975  0.36414867  0.35208823  0.13713357  0.02258436  

2 0.02200388  0.10283032  0.36411727  0.35158924  0.13722555  0.02223374  

3 0.02206826  0.10218387  0.36531467  0.35178461  0.13660569  0.02204291  

4 0.02210654  0.10193585  0.36594178  0.35193114  0.13619092  0.02189376  

5 0.02203113  0.10199485  0.36561277  0.35194972  0.13638705  0.02202447  

6 0.02190601  0.10190424  0.36540458  0.35209559  0.13646300  0.02222657  

Transition 
Matrix 

1 2 3 4 5 6 

1 0.02205860  0.10213062  0.36543228  0.35185512  0.13649931  0.02202408  

2 0.02205873  0.10213719  0.36542025  0.35185169  0.13650657  0.02202557  

3 0.02205968  0.10213319  0.36542874  0.35185224  0.13650241  0.02202374  

4 0.02206032  0.10213188  0.36543251  0.35185210  0.13650056  0.02202263  

5 0.02206001  0.10213156  0.36543270  0.35185271  0.13650017  0.02202284  

6 0.02205978  0.10212969  0.36543594  0.35185391  0.13649813  0.02202255  

Transition 
Matrix  

1 2 3 4 5 6 

1 0.02203659  0.10212547  0.36538874  0.35188352  0.13651294  0.02205273  

2 0.02205026  0.10219048  0.36530892  0.35183867  0.13656420  0.02204747  

3 0.02205925  0.10213807  0.36541518  0.35185049  0.13650999  0.02202702  

4 0.02206516  0.10211826  0.36547020  0.35185190  0.13648236  0.02201212  

5 0.02205966  0.10211887  0.36545695  0.35185911  0.13648579  0.02201962  

6 0.02205305  0.10210308  0.36546843  0.35187831  0.13647135  0.02202577  
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Table 8: Predicted Transition Matrix in six days. 

Table 9: Predicted Transition Matrix in a week. 

 
Expected values are needed to be found out for each transition matrixes in order to compare with 
the real growth rates.  

Therefore, the results are shown below  

Table 10: Expected Stock Values with Different Close States for one day. 

Prediction Period : 1 day  

Close states Expected Values  

1 0.00866667 

2 (0.00155556) 

3 (0.00129707) 

4 0.00221007 

5 0.00340782 

6 0.00419355 

Transition 
Matrix 

1 2 3 4 5 6 

1 0.02205983  0.10213276  0.36543004  0.35185231  0.13650168  0.02202338  

2 0.02205982  0.10213280  0.36542993  0.35185230  0.13650174  0.02202341  

3 0.02205983  0.10213278  0.36542997  0.35185230  0.13650172  0.02202340  

4 0.02205983  0.10213278  0.36542998  0.35185229  0.13650172  0.02202339  

5 0.02205983  0.10213277  0.36542999  0.35185230  0.13650171  0.02202339  

6 0.02205984  0.10213276  0.36543003  0.35185230  0.13650169  0.02202338  

Transition 
Matrix  

1 2 3 4 5 6 

1 0.02205980  0.10213251  0.36543053  0.35185249  0.13650134  0.02202332  

2 0.02205973  0.10213310  0.36542928  0.35185229  0.13650204  0.02202356  

3 0.02205981  0.10213281  0.36542990  0.35185230  0.13650176  0.02202342  

4 0.02205986  0.10213273  0.36543010  0.35185227  0.13650167  0.02202335  

5 0.02205986  0.10213269  0.36543020  0.35185231  0.13650160  0.02202334  

6 0.02205987  0.10213251  0.36543059  0.35185239  0.13650137  0.02202327  
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Table 11: Expected Stock Values with Different Close States for two days. 

Prediction Period : 2 days   

Close states Expected Values  

1 0.00187016 

2 0.00099748 

3 0.00086318 

4 0.00076571 

5 0.00098143 

6 0.00143138 

Table 12: Expected Stock Values with Different Close States for three days. 

Prediction Period : 3 days  

Close states Expected Values  

1 0.00096596 

2 0.00091807 

3 0.00089609 

4 0.00087691 

5 0.00089480 

6 0.00091970 

Table 13: Expected Stock Values with Different Close States for four days. 

Prediction Period : 4 days  

Close states Expected Values  

1 0.00089738 

2 0.00089637 

3 0.00089390 

4 0.00089209 

5 0.00089303 

6 0.00089378 
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Table 14: Expected Stock Values with Different Close States for five days. 

Prediction Period : 5 days  

Close states Expected Values  

1 0.00089356 

2 0.00089374 

3 0.00089351 

4 0.00089337 

5 0.00089340 

6 0.00089337 

Table 15: Expected Stock Values with Different Close States for six days 

Prediction Period : 6 days  

Close states Expected Values  

1 0.00089346 

2 0.00089349 

3 0.00089347 

4 0.00089346 

5 0.00089346 

6 0.00089345 

Table 16: Expected Stock Values with Different Close States for one week. 

 
 
 

Prediction Period : 7 days  

Close states Expected Values  

1 0.00089347 

2 0.00089347 

3 0.00089347 

4 0.00089347 

5 0.00089347 

6 0.00089347 
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4. Conclusions 

Table 17: Actual Alibabba Group Stock Prices and Growth Rates from 2019-11-15 to 2019-12-02. 

 

As shown on the history data, the state on 2019-11-18 was state 3, and the actual growth rate for 
the following day was 0.003467. On the contrast, the one-day prediction table indicates that the ex-
pected growth rate for end state 3 should be -0.00129707. It may show a distinct difference in terms 
of specific numbers, but the actual growth rate is in state 4 and the expected growth rate is in 3, which 
means the expected growth rate should be considered be as relatively accurate. Since the range within 
each state is 2%, and the difference actual and expected growth rate is 0.003467 −
(−0.00129707) = 0.476497%. It is not hard to see that the difference is much smaller that the 
difference of ranges. In other words, the Markov model is able to make precise prediction on stock 
market.  

Similarly, the two-days prediction table gives the expected growth rate for end state 3 is 
0.00086318, and the actual growth rate is -0.015654. the difference between the actual and the ex-
pected growth rate is 0.00086318 − (−0.015654) = 1.651718%, which is also within the rage of 
states (even though they are in different states).  

The three-days prediction table gives the expected growth rate for end state 3 is 0.00089609, and 
the actual growth rate is 0.013765. Based on table 1, it is clear that both growth rate are in state 4.  

Furthermore, the four-days prediction table shows that the expected growth rate for end stated 3 
is 0.00089390, and the actual growth rate is 0.010386. It is not hard to verify from table 1 that both 
growth rates are from same state.  

Date Open High Low Close Volume Growth rate  

2019-11-15 184 185.600006 183.710007 185.490005 11296400  

2019-11-18 186.979996 186.979996 184.160004 184.610001 11822900 -
0.0047442124

9813433 

2019-11-19 186.309998 186.710007 183.869995 185.250000 13407200 0.003467 

2019-11-20 183.669998 183.699997 181.059998 182.350006 16684600 -0.015654 

2019-11-21 181.770004 184.889999 181.600006 184.860001 10254700 0.013765 

2019-11-22 185.800003 186.779999 183.934998 186.779999 10541000 0.010386 

2019-11-25 188.320007 190.720001 187.880005 190.449997 19157700 0.019649 

2019-11-26 190.389999 195.000000 189.039993 194.699997 51832300 0.022316 

2019-11-27 197.240005 200.979996 197.000000 200.820007 33040500 0.031433 

2019-11-29 199.809998 200.429993 198.350006 200.000000 18593100 -0.004083 

2019-12-02 198.580002 198.669998 193.509995 196.309998 19357700 -0.018450 
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Last but the least, the seven-days prediction table shows that the expected growth rate for end state 
3 is 0.00089347, and the actual growth rate is 0.019649. Both growth rates are from states 4, and their 
differences are within the range of states.  

Finally, it worth credit to conclude that stock market can be predicted by using Markov Model 
with memoryless property within a certain range of error.  
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